COMPUTER MODELS FOR PREDICTING FLYWHEEL SYSTEM FAILURE MODES AND ROTOR CRASH LOADS

Dave O'Kain DOE Flywheel Project Manager

Oak Ridge National Laboratory P.O. Box 2009 Oak Ridge, TN 37831-8088 Phone 432-576-0268 FAX 423-574-2102

Automotive R&D Poster Session Wednesday, October 30, 1996 1:30 p.m. to 5:00 p.m.

DOE PROGRAM

OBJECTIVE:

systems for automotive use capabilities which will enable industry to design and build flywheel Develop safety and containment technology and analytical

APPROACH:

- Formulate safety and containment models
- review failure load information
- identify underlying physics
- engineering calculations
- computer codes
- Establish design strategies and tools
- safety analysis
- rotor design methodology
- containment design methodology
- Develop enabling technologies
- bearings
- materials for rotor and containment
- instrumentation
- power electronics
- Establish standardized test procedures
- operability and performance
- environmental insults
- dernonstrate containment adequacy

FLYWHEEL SYSTEM SAFETY DESIGN STRATEGY

AVOID FAILURE

- Conduct safety analyses (FTAs, FMEAs and ETAs)
- Determine critical lifetimes (cycle life, stress life, creep life)
- Apply wide critical lifetime or operating design margins such as operate at low ratio of stress to ultimate stress,
- select operating speed for infinite cycle life
- select materials with acceptable creep characteristics
- Monitor rotor condition using changes in runout, vibration, temperature, and vacuum level to detect problems

MINIMIZE FAILURE LOADS

- Build in a fuse link that induces a benign failure
- Use a rapid dump energy system

MINIMIZE FAILURE EFFECTS

Develop containment that can manage pressure and penetration loads